ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Waste Management 2025: Building a new era of nuclear
While attendance at the 2025 Waste Management Conference was noticeably down this year due to the ongoing federal retrenchment, the conference, held March 9-13 in Phoenix, Ariz., still drew a healthy and diverse crowd of people working on the back end of the nuclear fuel cycle, both domestically and internationally.
Adam Q. Lam, Richard M. Vega
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 388-409
Research Article | doi.org/10.1080/00295639.2024.2380611
Articles are hosted by Taylor and Francis Online.
We present a new method for solving the linear Boltzmann transport equation. Two commonly used and well-understood methods for solving partial differential equations are the method of characteristics (MOC) and the finite element method (FEM). We propose a new method that combines the fundamental concept of the FEM with the analytic solution from the MOC to obtain coefficients for the FEM basis function expansion. Traditionally, coefficients for the FEM basis function expansion are obtained via matrix inversion. Instead, we solve for the coefficients with the MOC and represent the underlying fields with the basis function expansion using these coefficients. We provide a convergence study for our method with results from two sets of FEM basis functions: Gauss-Legendre and Gauss-Lobatto sets. We also compare two different variations of our method categorized as short characteristics and intermediate characteristics.