ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Duong Thanh Tai, Hoang Duc Tuan, Nguyen Xuan Hai, Nguyen Ngoc Anh, David Bradley, Peter Sandwall, James C. L. Chow
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 314-324
Research Article | doi.org/10.1080/00295639.2024.2366733
Articles are hosted by Taylor and Francis Online.
This study aims to describe the steps needed to be made in developing a commissioning report of a Halcyon linear accelerator utilizing the manufacturer’s golden beam data (GBD) as a reference in making the evaluation. The platform herein has determined the performance alignment of our local machine with the GBD obtained through comprehensive analyses. This made use of the gamma index and relative dose difference. This paper details the methodologies and outcomes of comparing local measurements against GBD during commissioning.
For the Halcyon linear accelerator, dosimetric data, including percentage depth doses, dose profiles, and output factors, were acquired using a three-dimensional scanning water tank and various ionization chambers. The GBD were exported from the treatment planning system and compared to the measurements. To evaluate the agreement between the GBD and measurements, gamma index and relative dose difference analyses were conducted.
For field sizes greater than 4 × 4 cm2, percentage depth doses and beam profiles, the gamma indices between GBD and measurements were less than 1%/1 mm. The gamma indices were found to be slightly greater for field sizes 2 × 2 cm2 and 4 × 4 cm2, remaining within 2%/2 mm, satisfying the American Association of Physicists in Medicine Medical Physics Practice Guideline 5 for commissioning and quality assurance of mega-volt photon beams. Deviations in the output factor between the GBD and measurements were not significant, remaining within 1%.
The GBD data were evaluated in the commissioning of a Halcyon linear accelerator, with analyses being made of the gamma index and relative dose difference. The gamma index analysis is shown to be an effective method for comprehensively evaluating deviations between the GBD and measurements in the beam matching process.