ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Duong Thanh Tai, Hoang Duc Tuan, Nguyen Xuan Hai, Nguyen Ngoc Anh, David Bradley, Peter Sandwall, James C. L. Chow
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 314-324
Research Article | doi.org/10.1080/00295639.2024.2366733
Articles are hosted by Taylor and Francis Online.
This study aims to describe the steps needed to be made in developing a commissioning report of a Halcyon linear accelerator utilizing the manufacturer’s golden beam data (GBD) as a reference in making the evaluation. The platform herein has determined the performance alignment of our local machine with the GBD obtained through comprehensive analyses. This made use of the gamma index and relative dose difference. This paper details the methodologies and outcomes of comparing local measurements against GBD during commissioning.
For the Halcyon linear accelerator, dosimetric data, including percentage depth doses, dose profiles, and output factors, were acquired using a three-dimensional scanning water tank and various ionization chambers. The GBD were exported from the treatment planning system and compared to the measurements. To evaluate the agreement between the GBD and measurements, gamma index and relative dose difference analyses were conducted.
For field sizes greater than 4 × 4 cm2, percentage depth doses and beam profiles, the gamma indices between GBD and measurements were less than 1%/1 mm. The gamma indices were found to be slightly greater for field sizes 2 × 2 cm2 and 4 × 4 cm2, remaining within 2%/2 mm, satisfying the American Association of Physicists in Medicine Medical Physics Practice Guideline 5 for commissioning and quality assurance of mega-volt photon beams. Deviations in the output factor between the GBD and measurements were not significant, remaining within 1%.
The GBD data were evaluated in the commissioning of a Halcyon linear accelerator, with analyses being made of the gamma index and relative dose difference. The gamma index analysis is shown to be an effective method for comprehensively evaluating deviations between the GBD and measurements in the beam matching process.