ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Zhilei Chen, Huoping Zhong, Yin Hu, Tingwen Yan, Ruilong Yang, Qifa Pan, Lizhu Luo, Yongbin Zhang, Daoming Chen, Kezhao Liu
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 239-252
Research Article | doi.org/10.1080/00295639.2024.2348856
Articles are hosted by Taylor and Francis Online.
Nitriding technologies are promising surface modification techniques of uranium based on pulsed laser irradiating and glow plasma treatment. Nitrided layers with different nitrogen contents (UN0.35, UN0.75, UN1.08 and UN1.5) were prepared on the surface of uranium. The present study aims to investigate the microstructure and corrosion properties of the reaction of the UNx layers with ultra-low water vapor at room temperature. The electronic structures were analyzed in situ by X-ray photoelectron spectroscopy in high vacuum.
The results showed that the UN0.35, UN0.75, and UN1.08 samples were mainly composed of uranium nitride (UN) and metallic uranium, while the surface microstructure of the UN1.5 sample was U2N3. The dense and uniform nitride layer with a grain size of 20 to 50 nm was obtained on the uranium surface, which acted as a barrier and prevented the further diffusion of anions into the matrix. The corrosion products of the UN0.35, UN0.75, and UN1.08 samples were mainly UO2-xNy and UO2 after reaction with the water vapor. The contents of UO2-xNy increased with increasing nitrogen contents, and the corrosion rate decreased significantly. The intermediate compounds UO2-xNy reacted slowly with the water vapor, and eventually converted to UO2. Meanwhile, the corrosion products of the UN1.5 sample were mainly U2N3+xOy and UO2-xNy after reaction with the water vapor. The percentage of U2N3+xOy and UO2-xNy remained almost stable over a long period of time, which indicated that the high contents of U2N3+xOy and UO2-xNy prolonged the time for complete conversion to UO2. It can be concluded that the U-N-O ternary compounds retarded the corrosion process and the UNx layers with high nitrogen contents showed excellent corrosion resistance.