ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC board to hear challenges to Dow’s Long Mott application
A Nuclear Regulatory Commission Atomic Safety and Licensing Board (ASLB) will hear arguments on February 26 on challenges to a construction permit application from Long Mott Energy (LME) for a multiunit reactor facility at Dow Chemical Company’s Seadrift site in Calhoun, Texas. LME is a wholly owned subsidiary of Dow.
Yunfei Sun, Tong Li, Lan Lan, Shuhao Xu, Jiahua Chen, Wanqian Zhu, Song Xue, Hongxin Luo, Limin Jin
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 209-222
Research Article | doi.org/10.1080/00295639.2024.2356400
Articles are hosted by Taylor and Francis Online.
Based on finite element analysis, a typical synchrotron radiation front-end high heat load absorber (fixed mask) is thermally analyzed to illustrate the heat transfer paths and thermal release mechanisms. Based on the finite element model, the steady-state and transient thermal analyses are jointly adopted, focusing on obtaining the thermodynamic behavior of the absorber after being illuminated and heated by the synchrotron beam, as well as cooled by thermal convection (including air convection and cooling fluid convection) and thermal radiation. This paper focuses on analyzing the changes to key indexes, such as temperature and thermal stress, of an absorber subjected to high heat load on the timescale. In addition, the contributions of the previously mentioned different thermal heat release modes to the heat release process are also quantitatively analyzed to elaborate the thermal release mechanisms, which can be pretty helpful for guiding the structural optimization design of such types of components.