ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Rodolfo M. Ferrer, Edward W. Larsen
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 194-208
Research Article | doi.org/10.1080/00295639.2024.2356986
Articles are hosted by Taylor and Francis Online.
An infinite-medium analysis is performed for neutron transport spatial discretization methods in planar geometry. Angular flux solutions of the spatially continuous transport equation, which are driven by a linear (or quadratic) source, are shown to vary linearly (or quadratically) in space and angle; these are used to assess whether the discretized transport equations preserve certain cell-averaged and edge quantities. Each of the continuous angular flux solutions has a scalar flux that satisfies the standard diffusion equation; our analysis predicts whether the transport discretizations yield an accurate diffusion coefficient and (diffusion) spatial differencing scheme.
The linear moment–based discretization methods under consideration, which are found to preserve certain features of the linear (or quadratic) infinite-medium angular flux solutions, are the familiar linear discontinuous (LD), lumped linear discontinuous (LLD), and linear characteristic (LC) schemes. The step characteristic scheme, which yields an unphysically large diffusion coefficient, is revisited and shown to possess, for diffusive problems, a solution error that would occur if an unphysical anisotropic scattering term had been included in the starting discretized transport equations.
The numerical results verify the theoretical predictions and demonstrate the accuracy of the LD, LLD, and LC schemes in highly scattering problems that are optically thick. Our numerical results also illustrate the impact of inaccuracies in the diffusion coefficient on the numerical solutions of eigenvalue problems. The analysis in this paper has practical implications in the choice of spatial schemes used to solve realistic eigenvalue problems.