ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
W. A. Metwally, M. N. Dupont, W. J. Marshall, C. Celik, V. Karriem, A. Lang, K. L. Fassino, A. M. Shaw
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 185-193
Review Article | doi.org/10.1080/00295639.2024.2360309
Articles are hosted by Taylor and Francis Online.
Criticality safety analyses are conducted to show compliance with regulatory standards and to demonstrate safe operational conditions during the storage and transportation of spent nuclear fuel. Given the increased interest in the industry in low-enriched uranium plus (LEU+) and higher-burnup fuel, it is important to study the impact of such fuels’ use on criticality safety analyses and the resulting nuclear data–induced uncertainties. In this work, nominal pressurized water reactor assemblies with LEU+ fuel enrichments up to 8 wt% 235U and high burnups up to 80 GWd/tonne U were studied. The assemblies were placed in a generic burnup credit cask GBC-32. As a result of the different covariance libraries, using the ENDF/B-VII.1 nuclear data library consistently resulted in lower nuclear data uncertainties than did the use of the ENDF/B-VIII.0 data library. The highest contribution in the nuclear data–induced uncertainties resulted from the major actinides, and their contribution increased with increasing burnup and enrichment.