In this paper, numerical simulation methods are used to study issues related to the optimal operating modes of hyperspeed (rotor velocity 1000 m/s and above) model gas centrifuges (GCs) of various lengths and velocities of rotation. The possibility of gas extraction under optimal conditions is studied using three-dimensional modeling. It is shown that for hyperspeed GCs with the Pitot tube as gas extractor, simultaneous attainment of the optimal values for both friction power and waste flux, which are necessary for achieving the optimal operating mode, is unattainable, unlike GC models with a rotor velocity of 600 m/s. It is also shown that the working gas within the shockwave generated by the gas extractor can attain temperatures exceeding 1300 K, which raises the question of a possible accelerated decomposition of uranium hexafluoride.