ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hongchun Wu, Lin Guo, Chenghui Wan
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 115-130
Research Article | doi.org/10.1080/00295639.2024.2334988
Articles are hosted by Taylor and Francis Online.
Fuel assembly bowing, widely observed in a pressurized water reactor (PWR), often results in an asymmetrical power distribution. This paper proposes a neutron-diffusion method that integrates the arbitrary quadrilateral node with the conformal mapping technique to characterize the impact of fuel assembly bowing on power distribution. The proposed method involves a nonlinear iteration process to solve the neutron-diffusion equation. The global coarse-mesh finite difference equation is established on the arbitrary quadrilateral nodes, which are redivided in response to fuel assembly bowing. The local two-node nodal expansion method equation is established on the rectangular nodes, which are mapped from the original arbitrary quadrilateral nodes using the conformal mapping technique.
The proposed method has improved our self-developed core code, named SPARK, for PWRs. To verify this novel method, two distinct types of fuel assembly bowing are modeled based on the mini core. The reference results for these models were obtained using the Monte Carlo code NECP-MCX. The numerical results suggest a robust agreement between the biases of keff and power distributions and their corresponding reference results.