ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Hongchun Wu, Lin Guo, Chenghui Wan
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 115-130
Research Article | doi.org/10.1080/00295639.2024.2334988
Articles are hosted by Taylor and Francis Online.
Fuel assembly bowing, widely observed in a pressurized water reactor (PWR), often results in an asymmetrical power distribution. This paper proposes a neutron-diffusion method that integrates the arbitrary quadrilateral node with the conformal mapping technique to characterize the impact of fuel assembly bowing on power distribution. The proposed method involves a nonlinear iteration process to solve the neutron-diffusion equation. The global coarse-mesh finite difference equation is established on the arbitrary quadrilateral nodes, which are redivided in response to fuel assembly bowing. The local two-node nodal expansion method equation is established on the rectangular nodes, which are mapped from the original arbitrary quadrilateral nodes using the conformal mapping technique.
The proposed method has improved our self-developed core code, named SPARK, for PWRs. To verify this novel method, two distinct types of fuel assembly bowing are modeled based on the mini core. The reference results for these models were obtained using the Monte Carlo code NECP-MCX. The numerical results suggest a robust agreement between the biases of keff and power distributions and their corresponding reference results.