ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Jesson Hutchinson, Jennifer Alwin, Theresa Cutler, Matthew Gooden, Noah Kleedtke, Denise Neudecker, Nicholas Thompson, Robert Weldon, Nicholas Whitman, Robert Little
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 42-60
Research Article | doi.org/10.1080/00295639.2024.2343118
Articles are hosted by Taylor and Francis Online.
Reaction rate ratios are integral responses that are used within the criticality experiments field because they contain spectral information. While these types of measurements have been utilized for nuclear data validation with historic experiments, few experiments of this type have been utilized for recent experiments, as few exist. This work focuses on measured reaction rate ratios for two nearly bare plutonium critical assemblies with different geometries: one that is cube like (with a Pu mass of 40 kg) and one that is slab like (with a Pu mass of 109 kg). Irradiations were performed with both configurations in which foils were placed near the center of the assembly. Plutonium, highly enriched uranium, depleted uranium, and Au foils were included in the irradiation and counted via high-purity germanium detectors. From these measurements, reaction rate ratios were calculated.
Measured and simulated values and uncertainties are presented for the reaction rate ratios. Ratios utilizing the following reactions are given in this work: 197Au(n, ), 197Au(n,2n), 235U(n,fission), 238U(n,fission), 238U(n,2n), 238U(n,), and 239Pu(n,fission). Uncertainties for the measured reaction rate ratios ranged from 4% to 7%, and the contribution of various parameters to this uncertainty was investigated. The results are compared to historical experiments and should be used for nuclear data validation for future nuclear data library releases. These measurements are part of the EUCLID (Experiments Underpinned by Computational Learning for Improvements in Nuclear Data) project, which utilizes measurement responses in addition to keff (such as these reaction rate ratios) to help reduce uncertainties in 239Pu nuclear data.