ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Xinyi Shen, Ping Tan, Xinze Wang, Songbin Chen, Haimin Xiong
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 1-17
Research Article | doi.org/10.1080/00295639.2024.2340182
Articles are hosted by Taylor and Francis Online.
In pencil beam scanning proton therapy, the regulation and stabilization of the scanning magnetic field between two spots should be completed as quickly as possible in order to reduce treatment time. Because of the eddy current effect, the dynamic magnetic field lags behind the excitation current. It is significant to analyze the dynamic field and reduce the field stability time to minimize the delivery time and improve the therapy efficiency. In this paper, dynamic magnetic field simulation is carried out with a full lamination model of the scanning magnet in the Huazhong University of Science and Technology Proton Therapy Facility. In addition, a single lamination model instead of a full lamination model is explored to reduce time cost and memory for lamination of no more than 1-mm thickness. The eddy current diffusion trend and the influence of lamination on the eddy current are investigated. Moreover, the effect of lamination thickness (ranging from 5 to 0.1 mm) and current ramp rate (ranging from 20 to 100 A/ms) on the magnetic field stability time is studied. In addition, the characteristic of magnetic stability time for various spot steps is analyzed. Considering two spot patterns with discrete or clustered spots, an optimized delivery strategy with various scanning dead times according to the step is presented. When the lamination is 1 mm, the scanning time can be reduced by 39.2% for a clustered pattern and 38.4% for a discrete pattern using a genetic algorithm based on the different scanning dead-time strategy instead of the fixed dead-time strategy. With a thinner 0.1-mm lamination, the scanning time can be reduced by 49.8% for the clustered pattern and 43.3% for the discrete pattern, compared to that of the 1-mm lamination.