ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Boran Kong, Longfei Xu, Baiwen Li
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2316-2334
Research Article | doi.org/10.1080/00295639.2024.2310391
Articles are hosted by Taylor and Francis Online.
The convergence behavior of a two-dimensional (2D) transport method has been derived by Fourier analysis for single-group problems with isotropic sources. However, in real calculation, to pursue precision, a high-order scattering source is a common option, and its influence on convergence performance is worth investigating. No theoretical convergence study of a 2D transport method for multigroup problems with high-order scattering sources was previously performed, but it is important work that would complement existing studies. This study presents a Fourier analysis for solving multigroup problems with high-order scattering. First, the influences of the number of inner iterations for the multigroup isotropic scattering problem are analyzed. It is found that with an increase of the number of inner iterations, the spectral radius decreases and finally reaches an asymptotic value. When the scattering ratio is increased, more inner iterations are required to reach the asymptotic value. Then, the influences of high-order scattering are analyzed. The Fourier analysis results show that for high-order scattering source problems, the influence of the number of inner iterations is different from the isotropic scattering case. The influences of first-order scattering and second-order scattering are not the same. With an increase of first-order scattering, the spectral radius first decreases in the small optical thickness region and then increases in the large optical thickness region, which may lead to the divergence of iterations. If second-order scattering is not too large, an increase of second-order scattering decreases the spectral radius for all optical thickness regions. First-order scattering and second-order scattering that are too large may result in an unpredictable slope of the spectral radius for optical thicknesses between 10−1 and 1.