ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Cheng Peng, Jian Deng, Jiang Wu
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2190-2208
Research Article | doi.org/10.1080/00295639.2023.2292930
Articles are hosted by Taylor and Francis Online.
Because of its superior thermal-hydraulic qualities, liquid sodium has been applied to a variety of industries, including energy storage, solar energy, sodium-cooled fast reactors, and aerospace. However, fires brought on by sodium leaks at high pressure can have major thermodynamic repercussions and put employees and equipment in use at risk directly or indirectly. As a result, a realistic and accurate forecast of the combustion behavior of sodium droplet swarm can offer technical backing for the use of liquid sodium in engineering as well as a way of sodium fire prevention and control. Spray dynamics (droplet settling, droplet particle size distribution, etc.), combustion kinetics (premixed combustion, gas phase combustion, etc.), sodium aerosol diffusion, and other specialized phenomena all contribute to the complex process of sodium droplet swarm combustion. The NACOM code created by Brookhaven National Laboratory for sodium droplet swarm combustion is utilized in this paper as a framework. The code is first validated using the benchmark of the sodium droplet swarm combustion tests carried out by prestigious institutions. The validation results demonstrate that the code’s drag model, droplet combustion model, and heat transfer model are to blame for the significantly overestimated thermodynamic effects of sodium droplet swarm combustion. NACOM is subsequently developed twice for the authors’ previously developed vapor-liquid two-layer-structure drag model, chemical kinetic combustion model, and suitable heat transfer coefficient. It is then thoroughly assessed for the separate-effects tests and integral-effects test. The evaluation results demonstrate that the optimized drag model accelerates the settling of sodium droplets due to the consideration of the sodium-vapor drag reduction effect, reducing the thermodynamic effects of liquid sodium combustion; the optimized premixed combustion model can accurately predict the low-temperature sodium droplet swarm combustion conditions, resolving the issue of serious misvaluation of the original version of NACOM. The associated research findings can serve as valuable resources and tools for deeper comprehension of the combustion effects and mechanisms of sodium droplet swarm under various operating settings (such as leakage rate and oxygen concentration).