ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
E. Asano, S. Dewji
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2157-2173
Research Article | doi.org/10.1080/00295639.2024.2302764
Articles are hosted by Taylor and Francis Online.
This study compares the accuracy, efficiency, and reliability of variance reduction (VR) methods for Monte Carlo radiation transport simulations involving wide-area ground plane (i.e., “surface”) and buried (i.e., “volumetric”) gamma source emissions from environmental soil. The simulation models are idealized external exposure scenarios intended as a basis for deriving site-specific dose-based or carcinogenic risk–based regulatory limits in the radiological site remediation process. These simulations are computationally resource intensive since particle tracks are transported from an extremely large source region to a relatively small detector region. For each simulation, several VR methods are compared with metrics of accuracy, efficiency, and reliability. The MCNP deterministic transport (DXTRAN) VR method was most effective for problems involving sources emitting low-energy gamma rays, and a coupled multicode method was more effective for problems involving sources emitting higher-energy gamma rays that undergo significant attenuation in the soil.