ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Connor Woodsford, James Tutt, Jim E. Morel
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2148-2156
Research Article | doi.org/10.1080/00295639.2024.2303107
Articles are hosted by Taylor and Francis Online.
The second-moment (SM) method is a linear variant of the quasi-diffusion (QD) method for accelerating the iterative convergence of Sn source calculations. It has several significant advantages relative to the QD method, diffusion synthetic acceleration, and nonlinear diffusion acceleration. Here, we define a variant of this method for k-eigenvalue calculations that retains the advantages of the original method, and we computationally demonstrate the efficacy of the method for simple example calculations. In particular, this method has two important properties. First, it is a linear acceleration scheme requiring only the solution of a pure k-eigenvalue diffusion equation with a corrective source term as opposed to a k-eigenvalue drift-diffusion equation. Second, unconditional stability is achieved even when the diffusion equation is not discretized in a manner consistent with the Sn spatial discretization. We are unaware of any other scheme that has these properties. We also show a connection between our method and the k-eigenvalue acceleration technique of Barbu and Adams, which motivated us to develop our SM method.