ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Connor Woodsford, James Tutt, Jim E. Morel
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2148-2156
Research Article | doi.org/10.1080/00295639.2024.2303107
Articles are hosted by Taylor and Francis Online.
The second-moment (SM) method is a linear variant of the quasi-diffusion (QD) method for accelerating the iterative convergence of Sn source calculations. It has several significant advantages relative to the QD method, diffusion synthetic acceleration, and nonlinear diffusion acceleration. Here, we define a variant of this method for k-eigenvalue calculations that retains the advantages of the original method, and we computationally demonstrate the efficacy of the method for simple example calculations. In particular, this method has two important properties. First, it is a linear acceleration scheme requiring only the solution of a pure k-eigenvalue diffusion equation with a corrective source term as opposed to a k-eigenvalue drift-diffusion equation. Second, unconditional stability is achieved even when the diffusion equation is not discretized in a manner consistent with the Sn spatial discretization. We are unaware of any other scheme that has these properties. We also show a connection between our method and the k-eigenvalue acceleration technique of Barbu and Adams, which motivated us to develop our SM method.