ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Thomas Folk, Siddhartha Srivastava, Dean Price, Krishna Garikipati, Brendan Kochunas
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2096-2119
Research Article | doi.org/10.1080/00295639.2024.2303544
Articles are hosted by Taylor and Francis Online.
Accurately predicting errors incurred in a cross-section model for two-step reactor analysis enables the development of optimal case matrices and more efficient cross-section models. In a companion paper, we developed a systematic methodology for the partial derivatives cross-section model through rigorous analytic error analysis. In this paper, we verify our methodology against the conventional “brute force” numerical approach using a typical pressurized water reactor (PWR) lattice. By successfully reproducing known results, we gain confidence in our methodology’s application to advanced reactor environments, where optimal case matrices are generally not known. Our error methodology relies on accurately estimating bounds on the derivatives of the cross-section functions, a task we achieve through an order of convergence study. We use these derivative bounds in derived error expressions to obtain pointwise and setwise cross-section error bounds and verify these results with reference solutions of various two-group cross sections. We then propagate the cross-section error bounds to reactivity error using first-order perturbation theory and analyze their combined effect. Application of this approach to our test problem corroborates our prior qualitative findings with quantitative evidence and reveals the relative magnitudes of interpolation and model form error sources across diverse PWR cross-section functionalizations. Our results suggest systematic pathways for improving case matrix construction to minimize the overall error. These findings also confirm what is well known to the light water reactor design community, which is that interpolation error of cross sections for standard interpolation procedures and case matrix structures is on the order of 10 pcm or less. Future work includes exploring different lattice types and functionalizations, extending reactivity bounds to multi-lattice problems, and investigating historical effects within the macroscopic depletion model.