ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Thomas Folk, Siddhartha Srivastava, Dean Price, Krishna Garikipati, Brendan Kochunas
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2080-2095
Research Article | doi.org/10.1080/00295639.2023.2288308
Articles are hosted by Taylor and Francis Online.
Accurate assessment of uncertainties in cross-section data is crucial for reliable nuclear reactor simulations and safety analyses. In this study, we focus on the interpolation procedure of the partial derivatives (PD) cross-section model used to evaluate nodal parameters from pregenerated multigroup libraries. Our primary objective is to develop a systematic methodology that enables prediction of the incurred errors in the cross-section model, leading to the development of optimal case matrices, more efficient cross-section models, and informed case matrix construction for reactor types lacking substantial data and experience. We make progress toward this objective through a rigorous analytic error analysis enabled by the derivation of error expressions and bounds for the PD model based on the discovery that the method is a form of Lagrange interpolation. Our investigations reveal distinct outcomes depending on the chosen cross-section functionalizations, achieved by identifying the sources of error. These error sources are found to include interpolation error, which is always present, and model form error, which is a property of the supplied case matrix. We show that simply increasing grid refinement through the addition of branches may not always lead to decreased cross-section errors, particularly in cases where the model form error predominantly contributes to the total error. We present numerical results and verification in a companion paper, showing these different error characteristics for various cross-section functionalizations. Although applied to current light water reactor environments, our methodology offers a means for advanced reactor analysts to develop case matrices with quantified error levels, advancing the goal of a general methodology for robust two-step reactor analysis. Future work includes exploring different lattice types and functionalizations, extending reactivity bounds to multilattice problems, and investigating historical effects within the macroscopic depletion model.