ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Mohy Sabry, Neveen S. Abed, Ahmed Omar, Moamen G. El-Samrah, Mohamed Y. M. Mohsen
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1998-2012
Research Article | doi.org/10.1080/00295639.2023.2284441
Articles are hosted by Taylor and Francis Online.
This study examines the feasibility of utilizing mixed-oxide fuel [(U0.9, rgPu0.1) O2] instead of traditional UO2 in nuclear reactors. The utilization of (U0.9, rgPu0.1) O2 is particularly significant as it represents an effective approach to nuclear fuel recycling by combining reactor-grade plutonium extracted from partially used nuclear fuel and depleted uranium obtained through the enrichment process. The fundamental neutronic characteristics, such as the radial power distribution, were investigated using the MCNPX 2.7 algorithm to identify the specific channel for subsequent thermal-hydraulic (TH) analysis. The TH analysis was conducted using COMSOL-Multiphysics, allowing for the estimation of the fuel rod’s axial and radial temperature profiles, as well as the determination of the departure from the nucleate boiling ratio. Furthermore, the coupling between heat transfer and solid structure (SS) was achieved using the Multiphysics tool in COMSOL-Multiphysics. This coupling facilitated the simulation of key SS parameters, including von Mises stress, volumetric strain, and displacement, while considering the influence of heat transfer. The results demonstrate significant improvements and enhanced safety margins when utilizing (U0.9, rgPu0.1) O2.