ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mohy Sabry, Neveen S. Abed, Ahmed Omar, Moamen G. El-Samrah, Mohamed Y. M. Mohsen
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1998-2012
Research Article | doi.org/10.1080/00295639.2023.2284441
Articles are hosted by Taylor and Francis Online.
This study examines the feasibility of utilizing mixed-oxide fuel [(U0.9, rgPu0.1) O2] instead of traditional UO2 in nuclear reactors. The utilization of (U0.9, rgPu0.1) O2 is particularly significant as it represents an effective approach to nuclear fuel recycling by combining reactor-grade plutonium extracted from partially used nuclear fuel and depleted uranium obtained through the enrichment process. The fundamental neutronic characteristics, such as the radial power distribution, were investigated using the MCNPX 2.7 algorithm to identify the specific channel for subsequent thermal-hydraulic (TH) analysis. The TH analysis was conducted using COMSOL-Multiphysics, allowing for the estimation of the fuel rod’s axial and radial temperature profiles, as well as the determination of the departure from the nucleate boiling ratio. Furthermore, the coupling between heat transfer and solid structure (SS) was achieved using the Multiphysics tool in COMSOL-Multiphysics. This coupling facilitated the simulation of key SS parameters, including von Mises stress, volumetric strain, and displacement, while considering the influence of heat transfer. The results demonstrate significant improvements and enhanced safety margins when utilizing (U0.9, rgPu0.1) O2.