ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Husnain Murtaza, Muhammad Abdul Basit, Romana Basit, Wenxi Tian
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1984-1997
Research Article | doi.org/10.1080/00295639.2023.2284434
Articles are hosted by Taylor and Francis Online.
Interaction of prevailing ocean waves and wind with the platforms containing the small modular reactors (SMRs) employed in marine environments may significantly alter the flow and friction characteristics inside these reactors. The present research is focused on the numerical study of the effects of rolling motions on the turbulent flow and frictional characteristics of a three-dimensional closed loop of narrow rectangular channels using Ansys Fluent. The computational results have been corroborated with experimental data present in literature. The results illustrate that flow and friction characteristics fluctuate sinusoidally as the loop undergoes rolling motion. Strong fluctuations were observed in the flow rate and time-dependent friction coefficient with an increase in rolling amplitude or reduction in the rolling period. These variations became more pronounced at low Reynolds numbers and diminished at higher Reynolds numbers. Increasing the fluid viscosity also subsided the rolling effects. The average flow velocity in the loop was found to decrease from 0.27 to 0.15 m/s in various phases of the rolling period. The relative Reynolds number was found to be reduced by 50% under rolling motions for the range of steady-state Reynolds numbers investigated in the present study. The transient friction coefficient was also found to oscillate under rolling motion with the same period as that of excitation. The transient friction coefficient’s oscillations also increased with rolling amplitude or reduction in the rolling period. However, the temporally averaged friction coefficient under rolling motions was found to be equal to the steady-state frictional coefficient in the loop.