ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Satish Kumar Dhurandhar, S. L. Sinha, Shashi Kant Verma
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1965-1983
Research Article | doi.org/10.1080/00295639.2023.2280350
Articles are hosted by Taylor and Francis Online.
A grid spacer with a vane is an influential segment in reactor fuel channels. A vane produces significant effects on flow mixing and augmentation of heat transfer in subchannnels. The purpose of this work was to do a computational fluid dynamics (CFD) analysis on the effects of a grid spacer vane on the thermal-hydraulic performance of fluid in a 5×5 fuel channel. A square array of a 5×5 fuel channel was used for this analysis with a pitch–to–rod diameter ratio of 1.33 and a blockage ratio of the grid spacer of 0.16. The relative study was made for the thermal-hydraulic performance among a grid spacer with a vane, a grid spacer (without a vane), and without a grid spacer (bare bundle). Analyses were made for fluid pressure of 15.5 MPa, inlet temperature of 583 K, and velocity of 4.74 m/s. The SST k-ω and RNG k-ε turbulence models were used to analyze flow phenomena and thermal performance. CFD results were validated with experiment data and were also compared with correlations proposed by researchers. The results were analyzed by different methods such as data curves, streamlines, and vector and contour plots. The results show that the strong characteristics of swirl flow in subchannels cause a greater mixing rate of turbulent flow, which hence improves heat transfer performance. The swirl ratio was observed maximum close downstream to a grid spacer with a vane. Grid spacer effects on heat transfer were noticed from z/Dh = 0 to 20 in downstream.