The purpose of this study is to determine the kinetic parameters of the RSG-GAS equilibrium core. The calculated kinetic parameters are the effective delayed neutron fraction βeff, the neutron generation time Ʌ, and the prompt neutron lifetime ℓ since they are related to the safety of nuclear operations. The kinetic parameters were calculated using the Serpent 2 code with the ENDF/B-VII.1 and ENDF/B-VIII.0 nuclear data libraries. Calculations were performed using various adjoint-weighted methods such as Meulekamp’s method, Nauchi’s method, the Iterated Fission Probability method, and the Perturbation Technique. The calculated results of the six-group delayed neutron fraction by the Meulekamp and the IFP methods showed no significant difference. Choosing the IFP method as the reference, the maximum difference for βeff (694 pcm) is 0.73%, and the maximum difference for Ʌ and ℓ is 1.89%. The calculated kinetic parameters with ENDF/B-VII.1 and ENDF/B-VIII.0 are quite close, with a maximum difference of 0.9%. The sensitivity analysis results indicate several nuclides and reaction types that dominantly affect the βeff and Λ. The results of the kinetic parameter calculations can be used for the safety analysis of the RSG-GAS equilibrium core.