ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Surian Pinem, Liem Peng Hong, Wahid Luthfi, Tukiran Surbakti, Donny Hartanto
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1935-1949
Research Article | doi.org/10.1080/00295639.2023.2284433
Articles are hosted by Taylor and Francis Online.
The purpose of this study is to determine the kinetic parameters of the RSG-GAS equilibrium core. The calculated kinetic parameters are the effective delayed neutron fraction βeff, the neutron generation time Ʌ, and the prompt neutron lifetime ℓ since they are related to the safety of nuclear operations. The kinetic parameters were calculated using the Serpent 2 code with the ENDF/B-VII.1 and ENDF/B-VIII.0 nuclear data libraries. Calculations were performed using various adjoint-weighted methods such as Meulekamp’s method, Nauchi’s method, the Iterated Fission Probability method, and the Perturbation Technique. The calculated results of the six-group delayed neutron fraction by the Meulekamp and the IFP methods showed no significant difference. Choosing the IFP method as the reference, the maximum difference for βeff (694 pcm) is 0.73%, and the maximum difference for Ʌ and ℓ is 1.89%. The calculated kinetic parameters with ENDF/B-VII.1 and ENDF/B-VIII.0 are quite close, with a maximum difference of 0.9%. The sensitivity analysis results indicate several nuclides and reaction types that dominantly affect the βeff and Λ. The results of the kinetic parameter calculations can be used for the safety analysis of the RSG-GAS equilibrium core.