ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Lixun Liu, Han Zhang, Xinru Peng, Qinrong Dou, Yingjie Wu, Jiong Guo, Fu Li
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1911-1934
Research Article | doi.org/10.1080/00295639.2023.2284447
Articles are hosted by Taylor and Francis Online.
The Jacobian-free Newton-Krylov (JFNK) method is a widely used and flexible numerical method for solving the neutronic/thermal-hydraulic coupling system. The main property of JFNK is that the Jacobian-vector product is evaluated approximately by finite difference, avoiding the forming and storage of Jacobian explicitly. However, the lack of an efficient preconditioner is a major bottleneck for the JFNK method, leading to poor convergence. The finite difference Jacobian-based Newton-Krylov (DJNK) method is another advanced numerical method, in which the Jacobian matrix is formed and stored explicitly. The DJNK method can provide a better preconditioner for Krylov iteration than JFNK. However, how to compute the Jacobian matrix efficiently and automatically is a key issue for the DJNK method. By fully utilizing the sparsity of the Jacobian matrix and graph coloring algorithm, the Jacobian can be computed efficiently. Unfortunately, when there are dense rows/blocks, a huge computational burden will emerge due to the lack of sparsity, resulting in the extremely poor efficiency of Jacobian computation. In this work, a Jacobian-split Newton-Krylov (JSNK) method is proposed to resolve the dense row/block problem by combining the advantages of JFNK and DJNK. The main feature of the JSNK method is to split the Jacobian matrix into sparse and dense parts. The sparse part of the Jacobian matrix is explicitly constructed using the graph coloring algorithm while for the dense part, the Jacobian-vector product is approximated by finite difference. The computational complexity of the JSNK method is analyzed and compared to the JFNK method and the DJNK method from theoretical and experimental aspects and under different meshes. A simplified two-dimensional (2-D) high-temperature gas-cooled reactor (HTR) model and a simplified 2-D pressurized water reactor model are utilized to demonstrate the superiority of the JSNK method. The numerical results show that the JSNK method successfully resolved the dense rows/blocks. More importantly, its efficiency significantly outperforms the JFNK method and the DJNK method.