ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Lixun Liu, Han Zhang, Xinru Peng, Qinrong Dou, Yingjie Wu, Jiong Guo, Fu Li
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1911-1934
Research Article | doi.org/10.1080/00295639.2023.2284447
Articles are hosted by Taylor and Francis Online.
The Jacobian-free Newton-Krylov (JFNK) method is a widely used and flexible numerical method for solving the neutronic/thermal-hydraulic coupling system. The main property of JFNK is that the Jacobian-vector product is evaluated approximately by finite difference, avoiding the forming and storage of Jacobian explicitly. However, the lack of an efficient preconditioner is a major bottleneck for the JFNK method, leading to poor convergence. The finite difference Jacobian-based Newton-Krylov (DJNK) method is another advanced numerical method, in which the Jacobian matrix is formed and stored explicitly. The DJNK method can provide a better preconditioner for Krylov iteration than JFNK. However, how to compute the Jacobian matrix efficiently and automatically is a key issue for the DJNK method. By fully utilizing the sparsity of the Jacobian matrix and graph coloring algorithm, the Jacobian can be computed efficiently. Unfortunately, when there are dense rows/blocks, a huge computational burden will emerge due to the lack of sparsity, resulting in the extremely poor efficiency of Jacobian computation. In this work, a Jacobian-split Newton-Krylov (JSNK) method is proposed to resolve the dense row/block problem by combining the advantages of JFNK and DJNK. The main feature of the JSNK method is to split the Jacobian matrix into sparse and dense parts. The sparse part of the Jacobian matrix is explicitly constructed using the graph coloring algorithm while for the dense part, the Jacobian-vector product is approximated by finite difference. The computational complexity of the JSNK method is analyzed and compared to the JFNK method and the DJNK method from theoretical and experimental aspects and under different meshes. A simplified two-dimensional (2-D) high-temperature gas-cooled reactor (HTR) model and a simplified 2-D pressurized water reactor model are utilized to demonstrate the superiority of the JSNK method. The numerical results show that the JSNK method successfully resolved the dense rows/blocks. More importantly, its efficiency significantly outperforms the JFNK method and the DJNK method.