ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Rajendrakumar, K. Natesan, K. Devan
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1843-1873
Research Article | doi.org/10.1080/00295639.2023.2273570
Articles are hosted by Taylor and Francis Online.
The design of the next generation of fast breeder reactors has commenced, with the main targets being enhanced safety and improved economy. Nuclear heat generated in the fuel subassembly of fast reactors is removed by circulating sodium through the core using centrifugal pumps. The primary sodium pumps (PSPs) used are large-capacity pumps, and the design of these pumps is different from that of traditional pumps. Though many works have been reported for the performance prediction of centrifugal pumps, most of these works have been carried out in a decoupled way, and only a few works have been reported where the pump is modeled with all the associated geometric structures.
Centrifugal pumps are prone to a phenomenon called suction recirculation, which occurs when pumps are operated significantly below the best efficiency point. This suction recirculation has a strong potential to damage the impeller. Correlations given in the literature for the prediction of the onset of recirculation cannot be used for complicated inlet geometries, and three-dimensional computation fluid dynamics (CFD) investigations are most suited for such applications. Many devices have been reported in the literature to reduce the intensity of (or to suppress) suction recirculation. Webs provided in the suction plenum will modify the velocity distribution at the impeller inlet and also can influence suction recirculation.
In this work, the centrifugal pump used for primary sodium pumping for fast reactor applications is simulated using CFD techniques in an integrated way. The frozen rotor approach is used to simulate the impeller-diffuser hydraulics. The effect of flow hydraulics in the suction plenum, flow distribution in the standpipe–pump gap, and flow conditions in the pool on the performance characteristics of PSPs are simulated. The flow rate for the onset of suction recirculation is predicted and compared with correlations available in the literature. Simulations are carried out to study the effect of webs on suction recirculation. The effects of the number of webs and the web geometry are also studied.