ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Mahsa Rezaee, Dijo David, Marilyn Lightstone, Stephen Tullis
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1830-1842
Research Article | doi.org/10.1080/00295639.2023.2266625
Articles are hosted by Taylor and Francis Online.
A full-station blackout at a nuclear power plant can lead to fuel failures and radiological release to the environment if there is a breach of the reactor vessel. For Canada Deuterium Uranium (CANDU) reactors, the expected failure mechanism is through thermal stress concentration at the calandria vessel wall, and is thus influenced by local heat flux values. The current study uses computational fluid dynamics to simulate heat transfer, fluid flow, and crust formation within a CANDU geometry. Sensitivity to critical parameters, including the volumetric decay heat generation rate and the percentage of Zr oxidation is explored.
The results show that as the volumetric heat generation rate decreases, the crust is thicker, and the wall heat flux is lower. This suggests that the activation of mitigating measures that delay the accident progression result in more favorable outcomes. The percentage of Zr oxidation primarily influences the thermal conductivity, which impacts the crust formation and wall heat flux rates. Specifically, corium with a lower percentage of Zr oxidation has higher thermal conductivity, and thus lower heat transfer resistance. This results in lower corium temperatures, which reduces the radiation heat transfer from the top surface and also increases crust thickness. Higher rates of heat removal from the vessel wall thus occur. In contrast, a higher percentage of Zr oxidation results in lower thermal conductivity, which leads to lower wall heat flux and a thinner crust at the vessel wall. Overall, these findings highlight the importance of considering the effects of sensitivity parameters on the heat flux distribution in the event of severe accidents.