ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
G. B. Hiremath, V. P. Singh, N. H. Ayachit, N. M. Badiger
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1806-1816
Research Article | doi.org/10.1080/00295639.2023.2270742
Articles are hosted by Taylor and Francis Online.
The Ti-Nb-Fe-Cr alloys are used in various fields, such as nuclear radiation shielding, cladding material in nuclear reactors, and implants in the medical field. It is one of the best materials for biomedical applications as it is biocompatible, is corrosion resistant, and has good mechanical properties. As nuclear radiation emanates from various sources in a nuclear reactor, the behavior of this alloy with the interaction of gamma and neutrons has not been well studied. In the present investigations, the interaction of gammas and neutrons with Ti-27Nb-7Fe-xCr (x = 0, 2, 4, 6, and 8 wt%) alloys is studied in order to understand the radiation shielding properties and their usefulness in biomedical applications. Gamma-ray–interaction parameters such as MAC, HVL, MFP, Zeff, Zeq, Neff, and multilayer energy absorption buildup factor (MLEABF) are estimated using EpiXs, PyMLBUF, and NGCal software in the energy range of 1 keV to 15 MeV. The multilayer buildup factor (MLBF) is calculated for cortical bone and for alloys with varying Cr concentrations. Comparison of the MLBF values of alloys with cortical bone shows that in the lower-energy region as well as the higher-energy region above 0.5 MeV, alloys and cortical bone yield the same values, indicating that the alloys behave as cortical bone in this energy region. Mass attenuation factors (MAFs) of thermal and fast neutrons are also calculated for various elastic modulus values of selected alloys at thermal and fast neutrons. It is found that the elastic modulus increases with increasing MAF values of both fast and thermal neutrons. By increasing the Cr content in the Ti-27Nb-7Fe alloy, the elastic modulus decreases. The relationship between the MAF of neutrons and the elastic modulus of the alloy is established for the first time.