ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Tao Dai, Longfei Xu, Baiwen Li, Huayun Shen, Xueming Shi
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1759-1775
Research Article | doi.org/10.1080/00295639.2023.2273569
Articles are hosted by Taylor and Francis Online.
The deterministic methods are efficient for solving the neutron transport equation (NTE), but suffer from discretization errors. The increasingly complex geometric models make spatial discretization errors the primary source of discretization errors. Considering that spatial discretization errors come from inaccurate geometric shape descriptions and low-accuracy numerical schemes, this paper develops a Discontinuous Galerkin Finite Element Method for the NTE on unstructured polygonal meshes to reduce spatial discretization errors. In this method, the physical modal basis is adopted to handle the polygonal mesh and to achieve high-order accuracy in a uniform and efficient way. The numerical results of various fixed-source and k-eigenvalue benchmarks demonstrate that the method developed in this paper can give accurate solutions on polygonal meshes with high convergence rates.