ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Junhao Zhang, Weiwei Chen, Bingyu Ni, Jing Zheng, Kaixin Zhao, Wanyi Tian, Chao Jiang
Nuclear Science and Engineering | Volume 198 | Number 8 | August 2024 | Pages 1668-1681
Research Article | doi.org/10.1080/00295639.2023.2257508
Articles are hosted by Taylor and Francis Online.
During the decommissioning process of nuclear facilities, workers are exposed to radiation and face the risk of exceeding safe dose limits. Ensuring the safety of personnel requires not only enhancing radiation protection measures but also optimizing work paths to minimize exposure time and avoid high-radiation areas. This paper proposes a nested optimization algorithm that combines an ant colony optimization (ACO) with an improved A* algorithm for the decommissioning of a nonradiation source. The algorithm aims to minimize the total radiation dose and transforms the original path optimization problem into an equivalent traveling salesperson problem. The improved A* algorithm is employed in the inner layer to calculate the path with the lowest radiation dose for any given sales order. The ACO operates in the outer layer to determine a set of optimal working paths that traverse all target points. The provided solution example demonstrates that the proposed path optimization algorithm effectively integrates the radiation field and obstacles. It successfully identifies a sequence for dismantling with the lowest dose and corresponding optimal work path while ensuring the completion of the dismantling task. These findings are expected to offer valuable insights for optimizing personnel work paths during the subsequent decommissioning process of nuclear facilities.