ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Junhao Zhang, Weiwei Chen, Bingyu Ni, Jing Zheng, Kaixin Zhao, Wanyi Tian, Chao Jiang
Nuclear Science and Engineering | Volume 198 | Number 8 | August 2024 | Pages 1668-1681
Research Article | doi.org/10.1080/00295639.2023.2257508
Articles are hosted by Taylor and Francis Online.
During the decommissioning process of nuclear facilities, workers are exposed to radiation and face the risk of exceeding safe dose limits. Ensuring the safety of personnel requires not only enhancing radiation protection measures but also optimizing work paths to minimize exposure time and avoid high-radiation areas. This paper proposes a nested optimization algorithm that combines an ant colony optimization (ACO) with an improved A* algorithm for the decommissioning of a nonradiation source. The algorithm aims to minimize the total radiation dose and transforms the original path optimization problem into an equivalent traveling salesperson problem. The improved A* algorithm is employed in the inner layer to calculate the path with the lowest radiation dose for any given sales order. The ACO operates in the outer layer to determine a set of optimal working paths that traverse all target points. The provided solution example demonstrates that the proposed path optimization algorithm effectively integrates the radiation field and obstacles. It successfully identifies a sequence for dismantling with the lowest dose and corresponding optimal work path while ensuring the completion of the dismantling task. These findings are expected to offer valuable insights for optimizing personnel work paths during the subsequent decommissioning process of nuclear facilities.