ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Tejashree S. Phatak, Jayalekshmi Nair, Sangeetha Prasanna Ram, B. J. Roy
Nuclear Science and Engineering | Volume 198 | Number 8 | August 2024 | Pages 1583-1606
Research Article | doi.org/10.1080/00295639.2023.2259748
Articles are hosted by Taylor and Francis Online.
For the accurate estimation of neutron cross-section data, evaluation of nuclear data is mandatory to fulfill the need of nuclear science and technology. In this work, the evaluation of 232Th(n,2n)231Th, 241Am(n,2n)240Am, 100Mo(n,2n)99Mo, and 96Mo(n,p)96Nb reaction cross-section data is carried out using a novel method. This novel method of evaluation employs a cluster-based piecewise evaluation followed by a digital filter for merging the evaluated curves. The clusters in the experimental data and model data are identified using the probabilistic method of the Gaussian Mixture Model. The clustered experimental data are then regressed using the polynomial regression technique. The model data are generated using the Talys 1.9 code, and the model deficiency due to the complex random nature of nuclear reactions is also accounted here using chi-squared analysis. Evaluation in each cluster is then carried out independently using the popular Kalman filter technique. For obtaining a single smooth evaluated curve for the whole energy range, the popular smoothing digital filter, the Savitzky-Golay Filter, is employed for the first time in nuclear data evaluation. The proposed evaluated curves and existing evaluated curves of 232Th(n,2n)231Th, 241Am(n,2n)240Am, 100Mo(n,2n)99Mo, and 96Mo(n,p)96Nb reactions from nuclear data libraries such as ENDF/BVIII.0, JEFF-3.3, JENDL-4.0, CENDL-3.1, and TENDL 2021 are compared and found to be in good agreement. It is also found that generally, evaluation methods are data dependent, and so, a single evaluation method may not be applicable for all reactions of all nuclides. Since piecewise evaluation is cluster dependent, selecting the appropriate cluster makes this method robust for almost all reactions of all nuclides. Also, it is proven that this novel method of evaluation is a promising method demonstrating the potential of this approach for evaluation based on the chi-squared goodness-of-fit test with respect to standard evaluated library ENDF/BVIII.0 and experimental data.