ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
H. Naik, S. P. Dange, R. J. Singh, W. Jang
Nuclear Science and Engineering | Volume 198 | Number 8 | August 2024 | Pages 1566-1582
Research Article | doi.org/10.1080/00295639.2023.2259746
Articles are hosted by Taylor and Francis Online.
Post-neutron mass yield distribution in the epi-cadmium neutron-induced fission of 233U has been carried out by measuring the cumulative yields of various fission products within the mass ranges of 77 to 117 and 123 to 153 using an off-line gamma-ray spectrometric technique. Independent yields of a few fission products were also measured by using the same technique. Charge distribution correction has been applied on cumulative yields to obtain the post-neutron mass yields. The mass yield distribution parameters such as full-width at tenth-maximum of light and heavy mass wings, the average light mass <AL> and heavy mass <AH>, and the average number of neutrons <ν> were obtained. The spectrum average neutron energy is 1.9 MeV. Thus, the role of excitation energy on the nuclear structure effect was examined by comparing the mass yield data in between the epi-cadmium and thermal neutron–induced fission of 233U.