ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
H. Naik, S. P. Dange, R. J. Singh, W. Jang
Nuclear Science and Engineering | Volume 198 | Number 8 | August 2024 | Pages 1566-1582
Research Article | doi.org/10.1080/00295639.2023.2259746
Articles are hosted by Taylor and Francis Online.
Post-neutron mass yield distribution in the epi-cadmium neutron-induced fission of 233U has been carried out by measuring the cumulative yields of various fission products within the mass ranges of 77 to 117 and 123 to 153 using an off-line gamma-ray spectrometric technique. Independent yields of a few fission products were also measured by using the same technique. Charge distribution correction has been applied on cumulative yields to obtain the post-neutron mass yields. The mass yield distribution parameters such as full-width at tenth-maximum of light and heavy mass wings, the average light mass <AL> and heavy mass <AH>, and the average number of neutrons <ν> were obtained. The spectrum average neutron energy is 1.9 MeV. Thus, the role of excitation energy on the nuclear structure effect was examined by comparing the mass yield data in between the epi-cadmium and thermal neutron–induced fission of 233U.