ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
G. J. Youinou, A. Abou-Jaoudé
Nuclear Science and Engineering | Volume 198 | Number 8 | August 2024 | Pages 1534-1565
Research Article | doi.org/10.1080/00295639.2023.2252637
Articles are hosted by Taylor and Francis Online.
Several preliminary conceptual designs of nuclear thermal rocket reactor cores are presented that use tin-bonded monolithic ceramic [mononitride (UN), monocarbide (UC), and uranium dioxide (UO2)] fuel plates or pins with molybdenum-tungsten alloy clad. Neutron moderation is provided by a block of Be metal or composite materials using metal hydrides such as ZrH1.6 or YH1.6 with different matrices (MgO or Be). Mainly high-assay low-enriched uranium is considered, but highly enriched uranium is also assessed for a few configurations. Nominal core thermal power is 300 MW corresponding to about 66 kN (15 klbf) of thrust, and with minimal modifications, 500 MW may be possible (25 klbf of thrust). Depending on the configurations, the amount of 235U needed for criticality is 30 to 90 kg, and reactor weight is 2.5 to 3.8 tonnes.