ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Carolina Bourdot Dutra, Luiz Aldeia Machado, Elia Merzari
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1439-1454
Research Article | doi.org/10.1080/00295639.2023.2246778
Articles are hosted by Taylor and Francis Online.
The Sodium-Cooled Fast Reactor (SFR) is a promising concept chosen in the Generation IV International Forum as a possible design for pursuing the sustainable use of nuclear energy. Its core consists of multiple hydraulically isolated assemblies, with a tightly packed triangular lattice array of fuel pins enclosed in a hexagonal duct present within each assembly. Helical wire spacers are wrapped along the axis of the rods to maintain a gap between them, inducing a secondary flow, increasing the channel mixing, and enhancing convective heat transfer. In this study, a direct numerical simulation campaign is conducted for a simplified 7-pin wire wrapper geometry, with Reynolds numbers ranging from = 1000 to 10 000 and a Prandtl number of = 0.005, to investigate heat transfer in low-flow conditions. The wire wrapper case is compared to a bare bundle case with seven pins. The results are discussed, and heat transfer predictions are compared between our numerical results and classic correlations. An anisotropy invariant map is obtained for the above-mentioned cases, and turbulent kinetic energy and turbulent heat flux budgets are computed and analyzed. Our findings provide unique insights into the flow behavior within a wire-wrapped bundle.