ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Carolina Bourdot Dutra, Luiz Aldeia Machado, Elia Merzari
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1439-1454
Research Article | doi.org/10.1080/00295639.2023.2246778
Articles are hosted by Taylor and Francis Online.
The Sodium-Cooled Fast Reactor (SFR) is a promising concept chosen in the Generation IV International Forum as a possible design for pursuing the sustainable use of nuclear energy. Its core consists of multiple hydraulically isolated assemblies, with a tightly packed triangular lattice array of fuel pins enclosed in a hexagonal duct present within each assembly. Helical wire spacers are wrapped along the axis of the rods to maintain a gap between them, inducing a secondary flow, increasing the channel mixing, and enhancing convective heat transfer. In this study, a direct numerical simulation campaign is conducted for a simplified 7-pin wire wrapper geometry, with Reynolds numbers ranging from = 1000 to 10 000 and a Prandtl number of = 0.005, to investigate heat transfer in low-flow conditions. The wire wrapper case is compared to a bare bundle case with seven pins. The results are discussed, and heat transfer predictions are compared between our numerical results and classic correlations. An anisotropy invariant map is obtained for the above-mentioned cases, and turbulent kinetic energy and turbulent heat flux budgets are computed and analyzed. Our findings provide unique insights into the flow behavior within a wire-wrapped bundle.