ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Arsen S. Iskhakov, Victor Coppo Leite, Elia Merzari, Nam T. Dinh
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1426-1438
Research Article | doi.org/10.1080/00295639.2023.2180987
Articles are hosted by Taylor and Francis Online.
Traditional one-dimensional system thermal-hydraulic analysis has been widely applied in the nuclear industry for licensing purposes because of its numerical efficiency. However, such tools have inherently limited opportunities for modeling multiscale multidimensional flows in large reactor enclosures. Recent interest in three-dimensional coarse grid (CG) simulations has shown their potential in improving the predictive capability of system-level analysis. At the same time, CGs do not allow one to accurately resolve and capture turbulent mixing and stratification, whereas implemented in CG solvers relatively simple turbulence models exhibit large model form uncertainties. Therefore, there is a strong interest in further advances in CG modeling techniques. In this work, two high-to-low data-driven (DD) methodologies (and their combination) are explored to reduce grid and model-induced errors using a case study based on the Texas A&M upper plenum of a high-temperature gas-cooled reactor facility. The first approach relies on the use of a DD turbulence closure [eddy viscosity predicted by a neural network (NN)]. A novel training framework is suggested to consider the influence of grid cell size on closure. The second methodology uses a NN to predict velocity errors to improve low-fidelity results. Both methodologies and their combination have shown the potential to improve CG simulation results by using data with higher fidelity.