ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Arsen S. Iskhakov, Victor Coppo Leite, Elia Merzari, Nam T. Dinh
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1426-1438
Research Article | doi.org/10.1080/00295639.2023.2180987
Articles are hosted by Taylor and Francis Online.
Traditional one-dimensional system thermal-hydraulic analysis has been widely applied in the nuclear industry for licensing purposes because of its numerical efficiency. However, such tools have inherently limited opportunities for modeling multiscale multidimensional flows in large reactor enclosures. Recent interest in three-dimensional coarse grid (CG) simulations has shown their potential in improving the predictive capability of system-level analysis. At the same time, CGs do not allow one to accurately resolve and capture turbulent mixing and stratification, whereas implemented in CG solvers relatively simple turbulence models exhibit large model form uncertainties. Therefore, there is a strong interest in further advances in CG modeling techniques. In this work, two high-to-low data-driven (DD) methodologies (and their combination) are explored to reduce grid and model-induced errors using a case study based on the Texas A&M upper plenum of a high-temperature gas-cooled reactor facility. The first approach relies on the use of a DD turbulence closure [eddy viscosity predicted by a neural network (NN)]. A novel training framework is suggested to consider the influence of grid cell size on closure. The second methodology uses a NN to predict velocity errors to improve low-fidelity results. Both methodologies and their combination have shown the potential to improve CG simulation results by using data with higher fidelity.