ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Arsen S. Iskhakov, Victor Coppo Leite, Elia Merzari, Nam T. Dinh
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1426-1438
Research Article | doi.org/10.1080/00295639.2023.2180987
Articles are hosted by Taylor and Francis Online.
Traditional one-dimensional system thermal-hydraulic analysis has been widely applied in the nuclear industry for licensing purposes because of its numerical efficiency. However, such tools have inherently limited opportunities for modeling multiscale multidimensional flows in large reactor enclosures. Recent interest in three-dimensional coarse grid (CG) simulations has shown their potential in improving the predictive capability of system-level analysis. At the same time, CGs do not allow one to accurately resolve and capture turbulent mixing and stratification, whereas implemented in CG solvers relatively simple turbulence models exhibit large model form uncertainties. Therefore, there is a strong interest in further advances in CG modeling techniques. In this work, two high-to-low data-driven (DD) methodologies (and their combination) are explored to reduce grid and model-induced errors using a case study based on the Texas A&M upper plenum of a high-temperature gas-cooled reactor facility. The first approach relies on the use of a DD turbulence closure [eddy viscosity predicted by a neural network (NN)]. A novel training framework is suggested to consider the influence of grid cell size on closure. The second methodology uses a NN to predict velocity errors to improve low-fidelity results. Both methodologies and their combination have shown the potential to improve CG simulation results by using data with higher fidelity.