ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. Mao, V. Vishwakarma, Z. Welker, C. K. Tai, I. A. Bolotnov, V. Petrov, A. Manera
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1404-1425
Research Article | doi.org/10.1080/00295639.2023.2241800
Articles are hosted by Taylor and Francis Online.
To provide computational fluid dynamics (CFD)–grade experimental data for studying stratification, measurements on the High-Resolution Jet (HiRJet) facility at the University of Michigan have been conducted with density differences of and , respectively. Fluid with a density different from the fluid initially present in the HiRJet tank was injected, and the propagation of the time-dependent density stratification was captured on a two-dimensional plane with the aid of the wire-mesh sensor technique for Reynolds numbers near 5000 and Richardson numbers near 0.29. Direct numerical simulations (DNSs) of the two cases have also been conducted to expand the multifidelity database. The novel experimental and DNS data were then used to assess the predictive capabilities of the Standard (SKE) model and the Reynolds Stress Transport (RST) model. In particular, the propagation speed and thickness of the stratification fronts were assessed by comparing the CFD results against the experimental and DNS data. It was found that the general trends of the stratified density fronts were well predicted by the CFD simulations; however, slight overprediction of the thickness of the stratification layer was found with the SKE model while the RST model gave a larger overprediction of the mixing. Examination of the turbulent statistics showed that the turbulent viscosity was largely overpredicted by the RST model compared to the SKE model.