ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
J. Mao, V. Vishwakarma, Z. Welker, C. K. Tai, I. A. Bolotnov, V. Petrov, A. Manera
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1404-1425
Research Article | doi.org/10.1080/00295639.2023.2241800
Articles are hosted by Taylor and Francis Online.
To provide computational fluid dynamics (CFD)–grade experimental data for studying stratification, measurements on the High-Resolution Jet (HiRJet) facility at the University of Michigan have been conducted with density differences of and , respectively. Fluid with a density different from the fluid initially present in the HiRJet tank was injected, and the propagation of the time-dependent density stratification was captured on a two-dimensional plane with the aid of the wire-mesh sensor technique for Reynolds numbers near 5000 and Richardson numbers near 0.29. Direct numerical simulations (DNSs) of the two cases have also been conducted to expand the multifidelity database. The novel experimental and DNS data were then used to assess the predictive capabilities of the Standard (SKE) model and the Reynolds Stress Transport (RST) model. In particular, the propagation speed and thickness of the stratification fronts were assessed by comparing the CFD results against the experimental and DNS data. It was found that the general trends of the stratified density fronts were well predicted by the CFD simulations; however, slight overprediction of the thickness of the stratification layer was found with the SKE model while the RST model gave a larger overprediction of the mixing. Examination of the turbulent statistics showed that the turbulent viscosity was largely overpredicted by the RST model compared to the SKE model.