ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Cheng-Kai Tai, Jiaxin Mao, Victor Petrov, Annalisa Manera, Igor A. Bolotnov
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1347-1370
Research Article | doi.org/10.1080/00295639.2023.2197656
Articles are hosted by Taylor and Francis Online.
Stable density stratification in a large enclosure could significantly hamper the effectiveness of natural convection cooling in pool-type liquid metal or gas-cooled advanced reactors. In addition, accurate prediction of stratified front behavior remains to be a challenging task for turbulence modeling. With the rapid growth of high-performance-computing capabilities in recent years, conducting high-fidelity simulations for a large-timescale transient has become more affordable and hence a valuable data source to support turbulence modeling as well as to gain further physical insights. In this work, direct numerical simulation is performed at experiment-consistent conditions to simulate the density stratification transient High-Resolution Jet (HiRJET) facility. Specifically, we focus on the case where an injected aqueous sugar solution has 1.5% density higher than that in the enclosure. In the early stage of the transient, the impingement of the denser jet to the bottom surface of the enclosure promoted turbulent mixing locally. This rendered the establishment of the mixture layer, formation and swift upward propagation of the stratified front, and elevation with (locally) the highest vertical concentration gradient. As the front rose, the diminishing turbulent mass flux slowed down the propagation, and a larger vertical concentration gradient was established. In this stage, both the velocity and the concentration scalar showed large-timescale fluctuation behavior around the stratified front. For the concentration time signal, the characteristic frequency in the power spectral density was found to agree well with the Brunt-Väisällä frequency. The preliminary validation endeavor showed that the stratified front location and the corresponding concentration gradient magnitude in the simulation agreed well with the experiment data. Further validation will mainly revolve around benchmarking against high-resolution density measurement and high-order flow statistics.