ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Cheng-Kai Tai, Jiaxin Mao, Victor Petrov, Annalisa Manera, Igor A. Bolotnov
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1347-1370
Research Article | doi.org/10.1080/00295639.2023.2197656
Articles are hosted by Taylor and Francis Online.
Stable density stratification in a large enclosure could significantly hamper the effectiveness of natural convection cooling in pool-type liquid metal or gas-cooled advanced reactors. In addition, accurate prediction of stratified front behavior remains to be a challenging task for turbulence modeling. With the rapid growth of high-performance-computing capabilities in recent years, conducting high-fidelity simulations for a large-timescale transient has become more affordable and hence a valuable data source to support turbulence modeling as well as to gain further physical insights. In this work, direct numerical simulation is performed at experiment-consistent conditions to simulate the density stratification transient High-Resolution Jet (HiRJET) facility. Specifically, we focus on the case where an injected aqueous sugar solution has 1.5% density higher than that in the enclosure. In the early stage of the transient, the impingement of the denser jet to the bottom surface of the enclosure promoted turbulent mixing locally. This rendered the establishment of the mixture layer, formation and swift upward propagation of the stratified front, and elevation with (locally) the highest vertical concentration gradient. As the front rose, the diminishing turbulent mass flux slowed down the propagation, and a larger vertical concentration gradient was established. In this stage, both the velocity and the concentration scalar showed large-timescale fluctuation behavior around the stratified front. For the concentration time signal, the characteristic frequency in the power spectral density was found to agree well with the Brunt-Väisällä frequency. The preliminary validation endeavor showed that the stratified front location and the corresponding concentration gradient magnitude in the simulation agreed well with the experiment data. Further validation will mainly revolve around benchmarking against high-resolution density measurement and high-order flow statistics.