ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ragai Altamimi, Mohamed S. El-Genk
Nuclear Science and Engineering | Volume 198 | Number 6 | June 2024 | Pages 1320-1346
Research Article | doi.org/10.1080/00295639.2023.2249782
Articles are hosted by Taylor and Francis Online.
To support the development of Generation IV nuclear reactors, in-pile and out-of-pile test loops with miniature, submersible direct-current electromagnetic pumps (DC-EMPs) are used to investigate compatibility and corrosion issues of nuclear fuel and structure materials with flowing molten lead and alkali liquid metals. Owing to the absence of detailed experimental measurements and because of its simplicity and low computational cost, the equivalent circuit model (ECM) is widely used to predict the pump characteristics. The simplifying assumptions in the ECM contribute to overpredicting the pump characteristics by >10%. To gain insight into the pump operation and assess the effect of various assumptions in ECM, not possible even experimentally, this work performed three-dimensional (3-D), magnetohydrodynamic (MHD) analyses of a 66.8-mm-diameter, submersible, dual-stage DC-EMP, recently developed by the authors, for circulating molten Pb and liquid Na at up to 500°C. The solution of the coupled electromagnetism equations and the momentum and energy balance equations calculates the pump characteristics and provides 3-D images of the flow, electric current, and magnetic field strength distributions in the flow duct. The grid convergence index (GCI) criterion confirmed the adequacy of the employed numerical mesh refinement and the results conversion. Results demonstrate strong dependence of the magnetic field strength distribution in the flow duct on the value and the distribution of the electric current but negligible effects of the fluid temperature on joule heating and pump characteristics. The Lorentz force highest densities occur at the entrance of the two pumping stages, and approximately 10.0% of the total force occurs in the fringe regions upstream and downstream of pumping stages. The MHD pump characteristics are in general agreement with, but consistently lower than, the ECM predictions. For molten lead and liquid sodium, the difference between the calculated characteristics increases with increased flow rate and input current, up to 12% and 14%, respectively.