ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Ragai Altamimi, Mohamed S. El-Genk
Nuclear Science and Engineering | Volume 198 | Number 6 | June 2024 | Pages 1320-1346
Research Article | doi.org/10.1080/00295639.2023.2249782
Articles are hosted by Taylor and Francis Online.
To support the development of Generation IV nuclear reactors, in-pile and out-of-pile test loops with miniature, submersible direct-current electromagnetic pumps (DC-EMPs) are used to investigate compatibility and corrosion issues of nuclear fuel and structure materials with flowing molten lead and alkali liquid metals. Owing to the absence of detailed experimental measurements and because of its simplicity and low computational cost, the equivalent circuit model (ECM) is widely used to predict the pump characteristics. The simplifying assumptions in the ECM contribute to overpredicting the pump characteristics by >10%. To gain insight into the pump operation and assess the effect of various assumptions in ECM, not possible even experimentally, this work performed three-dimensional (3-D), magnetohydrodynamic (MHD) analyses of a 66.8-mm-diameter, submersible, dual-stage DC-EMP, recently developed by the authors, for circulating molten Pb and liquid Na at up to 500°C. The solution of the coupled electromagnetism equations and the momentum and energy balance equations calculates the pump characteristics and provides 3-D images of the flow, electric current, and magnetic field strength distributions in the flow duct. The grid convergence index (GCI) criterion confirmed the adequacy of the employed numerical mesh refinement and the results conversion. Results demonstrate strong dependence of the magnetic field strength distribution in the flow duct on the value and the distribution of the electric current but negligible effects of the fluid temperature on joule heating and pump characteristics. The Lorentz force highest densities occur at the entrance of the two pumping stages, and approximately 10.0% of the total force occurs in the fringe regions upstream and downstream of pumping stages. The MHD pump characteristics are in general agreement with, but consistently lower than, the ECM predictions. For molten lead and liquid sodium, the difference between the calculated characteristics increases with increased flow rate and input current, up to 12% and 14%, respectively.