ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Olin W. Calvin, Namjae Choi
Nuclear Science and Engineering | Volume 198 | Number 6 | June 2024 | Pages 1255-1275
Research Article | doi.org/10.1080/00295639.2023.2241807
Articles are hosted by Taylor and Francis Online.
The Chebyshev Rational Approximation Method (CRAM) has become one of the dominant methods for solving the Bateman equations for nuclear fuel depletion analysis. Since its introduction over a decade ago, several improvements have been made to CRAM improving its accuracy and reducing its run time. We analyzed its run time using two previously published methods for solving the CRAM system of equations, direct matrix inversion (DMI) and sparse Gaussian elimination (SGE), for depletion systems of varying numbers of nuclides to see how the two methods perform relative to one another. In addition to these two methods, we introduced the Gauss-Seidel (GS) method for solving the CRAM system of equations and compared its performance relative to DMI and SGE for depletion systems with varying numbers of nuclides. We demonstrated that for practical purposes, GS is faster than SGE and DMI and achieves a practical level of accuracy. All testing was performed using the CRAM implementation in the Griffin reactor physics analysis application.