ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yu Yang, Helin Gong, Qiaolin He, Qihong Yang, Yangtao Deng, Shiquan Zhang
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1075-1096
Research Article | doi.org/10.1080/00295639.2023.2236840
Articles are hosted by Taylor and Francis Online.
We performed uncertainty analysis and further numerical studies on the data-enabled physics-informed neural network (DEPINN). The purpose of DEPINN is to accurately and efficiently use a small amount of prior data to solve the neutron diffusion eigenvalue equations based on the physics-informed neural network. However, in practical engineering experiments, these prior data are acquired through different kinds of sensors, which are inevitably polluted by noise. Numerical results of three typical benchmark problems show that the classical DEPINN is not so robust with respect to noise. To improve the noise robustness, we propose an interval loss function to deal with the noisy prior data term; the weight of the noisy prior data term is also set to be noise dependent. Numerical results show that the proposed framework effectively enhances the robustness of DEPINN and improves the efficiency of utilizing the noisy prior data and thus promotes the engineering application of DEPINN.