ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yu Yang, Helin Gong, Qiaolin He, Qihong Yang, Yangtao Deng, Shiquan Zhang
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1075-1096
Research Article | doi.org/10.1080/00295639.2023.2236840
Articles are hosted by Taylor and Francis Online.
We performed uncertainty analysis and further numerical studies on the data-enabled physics-informed neural network (DEPINN). The purpose of DEPINN is to accurately and efficiently use a small amount of prior data to solve the neutron diffusion eigenvalue equations based on the physics-informed neural network. However, in practical engineering experiments, these prior data are acquired through different kinds of sensors, which are inevitably polluted by noise. Numerical results of three typical benchmark problems show that the classical DEPINN is not so robust with respect to noise. To improve the noise robustness, we propose an interval loss function to deal with the noisy prior data term; the weight of the noisy prior data term is also set to be noise dependent. Numerical results show that the proposed framework effectively enhances the robustness of DEPINN and improves the efficiency of utilizing the noisy prior data and thus promotes the engineering application of DEPINN.