ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Ana Carolina Santos de Souza, Luiz Rogério Pinho de Andrade Lima
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1051-1061
Research Article | doi.org/10.1080/00295639.2023.2229600
Articles are hosted by Taylor and Francis Online.
Monazite is one of the main light rare earth element (REE) minerals and is associated with the presence of Th. This poses challenges in processing due to the strong radiation present in this mineral. However, the use of Th as a nuclear fuel, after the transformation of 232Th into 233U, has been considered a better option than the currently more widespread use of 235U. Therefore, the separation of Th from the REE after leaching is an essential step that requires optimization.
In this study, the treatment of a leach solution in a hydrochloric medium from dephosphorized monazite is addressed. The separation of Th from light REEs was performed by solvent extraction with Cyanex 572 or 272. The tests considered included (1) the ratio of the monazite leaching liquor and organic solution, (2) the initial pH values, and (3) the concentration of the extractants. The aqueous-phase samples were analyzed by Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES). It was observed that at low pH, 60% of the Th was extracted by Cyanex 272 and 90% by Cyanex 572 in one single step. Acidity had little effect on Th extraction. The extractions of light REEs by Cyanex 272 and 572 were negligible in most cases, but for pH values greater than 2, Cyanex 272 extracted a considerable fraction of these elements, which did not occur with Cyanex 572. The results show that Th can be easily separated from light REEs in an acidic and hydrochloric medium by both Cyanex 272 and Cyanex 572.