ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Marco Tiberga, Simone Santandrea
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 853-897
Research Article | doi.org/10.1080/00295639.2023.2214488
Articles are hosted by Taylor and Francis Online.
The development of higher-order method of characteristics (MOC) discretizations has become of great interest to improve the performance of solvers based on the standard Stepwise Constant (SC) MOC approximation. Many codes nowadays implement a Stepwise Linear (SL) volume flux approximation or diamond differencing schemes. In the multigroup lattice solver TDT of the industrial code APOLLO3®, developed at CEA, a Linear Surface (LS) scheme was implemented. In this method, the flux is reconstructed from a linear interpolation made from surface values, therefore ensuring a similar spatial linear development but with a lower computational cost than the volume-based approximations. However, the LS-MOC scheme can conserve only the constant spatial moment of the flux. To overcome this limitation, in this paper we propose an improved version of the LS scheme called LS- able to preserve the linear spatial moments of the flux. Compared to the other high-order volume-based approximations, the LS- scheme also preserves flux surface moments, which guarantees higher accuracy. Moreover, our scheme has a lower memory footprint because it does not require the storage of response matrices that are dependent on region, group, and anisotropy order. Tests carried out on severe rodded assembly cases show the superior performance of the proposed method with respect to not only the classic SC or LS MOC scheme but also the SL scheme.