ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
About Studsvik Scandpower
Studsvik Scandpower (SSP) is the leading global provider of vendor-independent, state-of-the-art nuclear fuel management software and world-class engineering services. SSP offers a full suite of software product offerings, training, and engineering services, to support operating utilities, fuel vendors, safety authorities, and research organizations around the world.
Rofida H. Khlifa, Nicolay N. Nikitenkov, Viktor N. Kudiiarov
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 825-831
Research Article | doi.org/10.1080/00295639.2023.2224464
Articles are hosted by Taylor and Francis Online.
Chromium carbide (CrC) coatings were proposed as an accident-tolerant fuel complementary concept to provide enhanced protection for the inner side of nuclear fuel claddings, with preliminary results showing promising performance. To evaluate the neutronics performance of CrC coatings, a reactor physics–based analysis was performed. A single VVER-1200 fuel assembly was used as a model, and the Monte Carlo code MCNPX was used to perform the calculations. Results were compared to previous work on metallic chromium performance as inner-side coating material. Results showed that CrC coatings generally have less negative impacts on neutronics performance compared to chromium coatings. Neutron flux spectra showed slight reductions in the thermal energy region that reached up to −0.6% in a 40-µm CrC internally coated fuel assembly at an energy of 0.025 eV. The analysis of CrC internally coated fuel assembly nuclide inventories showed a relative increase in the isotopic concentration of some nuclides such as 239Pu and 241Pu, which was less than 1% for the cases considered. Comparing the calculated negative neutronics impacts, such as thermal neutron flux and fuel assembly operating time reductions, caused by CrC and Cr coating materials, the study revealed that the difference between these induced negative neutronics impacts is proportional to coating thickness. Therefore, CrC coatings will be most effective in terms of mitigating negative neutronics impacts when the specified coating thickness is large.