ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
H. Naik, R. J. Singh, S. P. Dange, W. Jang
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 771-785
Research Article | doi.org/10.1080/00295639.2023.2224274
Articles are hosted by Taylor and Francis Online.
The cumulative and independent yields of various fission products within the mass range of 78 to 157 have been measured in the epi-cadmium neutron–induced fission of 238Pu by using an off-line γ-ray spectrometric technique. The lower yield of 136I than the usual trend indicates the formation of delayed neutron emitter 137I. From the cumulative yields, post-neutron mass chain yields were obtained by using the charge distribution correction. From the mass yield data, the peak-to-valley (P/V) ratio, the full-width at tenth-maximum of light and heavy mass wings, the average light mass <AL> and heavy mass <AH> as well as the average number of neutrons <ν> emitted were obtained. The mass chain yield data in the 238Pu(n,f) reaction were compared with similar data of the 238Pu(nth,f) reaction to examine the role of excitation energy on the nuclear structure effect and P/V ratio.