ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Brendan D’Souza, Amanda Leong, Jinsuo Zhang
Nuclear Science and Engineering | Volume 198 | Number 3 | March 2024 | Pages 749-753
Note | doi.org/10.1080/00295639.2023.2199679
Articles are hosted by Taylor and Francis Online.
The present study tested Type 316L stainless steel (SS316L) with and without a preformed boride layer in a molten chloride salt at 800°C for 100 h. The results showed that the preformed boride layer on the specimen surface is stable and can completely inhibit the depletion of Cr of the steel. No attack layer by the molten salt was detected for the specimen with the preformed boride layer. Therefore, the data from the present study indicate that a preformed boride layer can be a protective layer to mitigate the corrosion of SS316L by molten salts.