ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jeongwon Seo, Hany S. Abdel-Khalik, Ugur Mertyurek, Goran Arbanas, William Marshall, William Wieselquist
Nuclear Science and Engineering | Volume 198 | Number 3 | March 2024 | Pages 673-701
Research Article | doi.org/10.1080/00295639.2023.2211202
Articles are hosted by Taylor and Francis Online.
The American National Standards Institute/American Nuclear Society national standards 8.1 and 8.24 provide guidance on the requirements and recommendations for establishing confidence in the results of the computerized models used to support operation with fissionable materials. By design, the guidance is not prescriptive, leaving freedom to the analysts to determine how the various sources of uncertainties are to be statistically aggregated. Due to the involved use of statistics entangled with heuristic recipes, the resulting safety margins are often difficult to interpret. Also, these technical margins are augmented by additional administrative margins, which are required to ensure compliance with safety standards or regulations, eliminating the incentive to understand their differences. With the new resurgent wave of advanced nuclear systems, e.g., advanced reactors, fuel cycles, and fuel concepts, focused on economizing operation, there is a strong need to develop a clear understanding of the uncertainties and their consolidation methods to reduce them in manners that can be scientifically defended. In response, the current studies compare the analyses behind four notable methodologies for upper subcriticality limit estimation that have been documented in the nuclear criticality safety literature: the parametric, nonparametric, Whisper, and TSURFER methodologies. Specifically, the work offers a deep dive into the various assumptions of the noted methodologies, their adequacies, and their limitations to provide guidance on developing confidence for the emergent nuclear systems that are expected to be challenged by the scarcity of experimental data. To limit the scope, the current work focuses on the application of these methodologies to criticality safety experiments, where the goal is to calculate a bias, a bias uncertainty, and a tolerance limit for keff in support of determining an upper subcriticality limit for nuclear criticality safety.