ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Naoto Aizawa, Cheol Ho Pyeon
Nuclear Science and Engineering | Volume 198 | Number 3 | March 2024 | Pages 658-672
Research Article | doi.org/10.1080/00295639.2023.2212580
Articles are hosted by Taylor and Francis Online.
Neutron irradiation experiments are carried out in source-driven subcritical cores with high-energy neutrons generated by spallation reactions between a 100-MeV proton beam and a lead-bismuth target at the Kyoto University Critical Assembly. The main objective of the experiments is to investigate the effect of epithermal and resonance neutrons on the accuracy of capture reaction rates with respect to a subcriticality variation. Activation foils of copper, indium, tantalum, and tungsten are employed to obtain capture reaction rates for epithermal and resonance neutrons by applying the cadmium difference method. Also, the applicability of the foils for the measurement of the reaction rates for epithermal and resonance neutrons is substantiated in the critical irradiation experiments performed prior to the subcritical experiments. The subcritical experiments are conducted with three different subcriticalities by changing the control rod insertion pattern.
The measured reaction rates are compared with the calculated values obtained by the Monte Carlo code MVP with JENDL-4.0, and the ratio of the calculation and experiment values of the reaction rates shows equivalent values within the 1σ errors regardless of a difference in the subcriticality. The compared results indicate that the numerical analyses have a consistent accuracy of reaction rates in epithermal and resonance energy regions for a subcriticality variation in source-driven subcritical cores.