ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Farzad Rahnema, Dingkang Zhang
Nuclear Science and Engineering | Volume 198 | Number 3 | March 2024 | Pages 628-639
Research Article | doi.org/10.1080/00295639.2023.2204820
Articles are hosted by Taylor and Francis Online.
The hybrid stochastic deterministic continuous-energy coarse mesh transport method (COMET) has been recently extended for high-fidelity efficient kinetics calculations in highly heterogeneous reactor cores. The method discretizes the time variable as a series of time grids and solves the resulting set of steady-state neutron transport equations. In this work, a high-order perturbation method is developed to update the COMET unperturbed response function library on the fly for changes in the discretized time step size . The unperturbed response functions are precomputed with . The perturbation expansion coefficients are also generated during the unperturbed response function library precomputation. The adjoint solution needed by the perturbation method is calculated using the reciprocity relation without solving the corresponding adjoint problems. As a result, the method can be easily implemented into any stochastic code to generate the perturbation expansion coefficients together with the unperturbed response functions.
The high-order perturbation method is benchmarked by comparing both the response functions and the time-dependent COMET core solution (fission density) with the corresponding reference solutions. It is found that the response functions generated by the perturbation method at second order are in excellent agreement with those directly computed by the Monte Carlo method. When changes from 1.0E-4 s to infinity, the average and maximum relative differences in the various response functions were found to be in the range of 0.0000106% to 0.00116% and 0.000011% to 0.00121%, respectively. The fission density as a function of time calculated by COMET using the perturbation method is in excellent agreement with the reference solutions, with an average relative difference of 0.0065% to 0.075%. These comparisons indicate that the perturbation method at second order is highly accurate.