ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Faouzi Hakimi, Claude Brayer, Amandine Marrel, Fabrice Gamboa, Benoît Habert
Nuclear Science and Engineering | Volume 198 | Number 3 | March 2024 | Pages 578-591
Research Article | doi.org/10.1080/00295639.2023.2197838
Articles are hosted by Taylor and Francis Online.
In the framework of risk assessment in nuclear accidents, simulation tools are widely used to understand and model physical phenomena. These simulation tools take into account a large number of uncertain input parameters. We often use Monte Carlo–type methods to explore their range of variation: The input space is randomly sampled, and a code run is performed on each sampled point. However, some of these code runs may fail to converge. Analyzing these code failures to understand which of the inputs have the most influence on them leads to a better understanding of how the code works. It also intends to improve the robustness of the simulation software and code computations. For this purpose, we propose two complementary approaches performing a statistical analysis of the code failures. The first approach is based on goodness-of-fit tests and compares conditional probability distributions according to code failures to a reference one. A second approach, based on a dependence measure named the Hilbert-Schmidt Independence Criterion, provides another way to measure the global dependence between the inputs and the code failures. The development of this methodology is carried out in the context of severe nuclear accidents. More especially, the presented methods are applied for the study of the simulation code MC3D, which simulates the fuel-coolant interaction in a severe nuclear accident context.