ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Dingkang Zhang, Farzad Rahnema
Nuclear Science and Engineering | Volume 198 | Number 3 | March 2024 | Pages 565-577
Research Article | doi.org/10.1080/00295639.2023.2196935
Articles are hosted by Taylor and Francis Online.
In this paper, the novel continuous-energy coarse mesh transport (COMET) method is extended to perform time-dependent neutronics calculations in highly heterogeneous reactor core problems. In this method, the time-dependent transport equation is converted into a series of steady-state transport equations by estimating the time derivative term using implicit finite differencing. The resulting steady-state transport equations, having additional terms that are imbedded in the total collision term and in the volumetric source terms, are then solved by the steady-state COMET method, in which all the phase-space variables, including energy, are treated continuously. Finally, the fission density distribution constructed by the steady-state COMET is used to solve a set of ordinary differential equations to obtain the delayed neutron precursor concentrations. The time-dependent COMET method is benchmarked against a direct continuous-energy Monte Carlo method (i.e., MCNP) in a set of infinite homogeneous problems and a set of single-assembly benchmark problems consisting of identical pin cells. It is found that the COMET results agree very well with the Monte Carlo reference solutions while maintaining its formidable computational speed (orders of magnitude faster than the Monte Carlo method).