ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Dingkang Zhang, Farzad Rahnema
Nuclear Science and Engineering | Volume 198 | Number 3 | March 2024 | Pages 565-577
Research Article | doi.org/10.1080/00295639.2023.2196935
Articles are hosted by Taylor and Francis Online.
In this paper, the novel continuous-energy coarse mesh transport (COMET) method is extended to perform time-dependent neutronics calculations in highly heterogeneous reactor core problems. In this method, the time-dependent transport equation is converted into a series of steady-state transport equations by estimating the time derivative term using implicit finite differencing. The resulting steady-state transport equations, having additional terms that are imbedded in the total collision term and in the volumetric source terms, are then solved by the steady-state COMET method, in which all the phase-space variables, including energy, are treated continuously. Finally, the fission density distribution constructed by the steady-state COMET is used to solve a set of ordinary differential equations to obtain the delayed neutron precursor concentrations. The time-dependent COMET method is benchmarked against a direct continuous-energy Monte Carlo method (i.e., MCNP) in a set of infinite homogeneous problems and a set of single-assembly benchmark problems consisting of identical pin cells. It is found that the COMET results agree very well with the Monte Carlo reference solutions while maintaining its formidable computational speed (orders of magnitude faster than the Monte Carlo method).