ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Pratibha Yadav, Reuven Rachamin, Jörg Konheiser, Silvio Baier
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 497-507
Research Article | doi.org/10.1080/00295639.2023.2211199
Articles are hosted by Taylor and Francis Online.
In nuclear engineering, Monte Carlo (MC) methods are commonly used for reactor analysis and radiation shielding problems. These methods are capable of dealing with both simple and complex system models with accuracy. The application of MC methods experiences challenges when dealing with the deep penetration problems that are typically encountered in radiation shielding cases. It is difficult to produce statistically reliable results due to poor particle sampling in the region of interest. Therefore, such calculations are performed by the Monte Carlo N-Particle Transport (MCNP) code in association with the weight window (WW) variance reduction technique, which increases the particle statistics in the desired tally region. However, for large problems, MCNP’s built-in weight window generator (WWG) produces zero WW parameters for tally regions located far from the source. To address this issue, the recursive Monte Carlo (RMC) method was proposed. This paper focuses on the RMC methodology and its implementation in the Helmholtz-Zentrum Dresden-Rossendorf’s (HZDR’s) in-house code TRAWEI, which is responsible for producing optimal zone weight parameters used for optimizing deep penetration MC calculations. In addition, this paper discusses the verification of the TRAWEI weight generator program to that of an existing MCNP WWG. The performance of TRAWEI-generated weight values is assessed using a handful of test cases involving two shield materials. Globally, the TRAWEI-generated weight values improved not only the statistical variance and computational efficiency of the MC run compared to the analog MCNP simulation but also those of the simulation with WW values generated by the standard MCNP WWG.