ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Pratibha Yadav, Reuven Rachamin, Jörg Konheiser, Silvio Baier
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 497-507
Research Article | doi.org/10.1080/00295639.2023.2211199
Articles are hosted by Taylor and Francis Online.
In nuclear engineering, Monte Carlo (MC) methods are commonly used for reactor analysis and radiation shielding problems. These methods are capable of dealing with both simple and complex system models with accuracy. The application of MC methods experiences challenges when dealing with the deep penetration problems that are typically encountered in radiation shielding cases. It is difficult to produce statistically reliable results due to poor particle sampling in the region of interest. Therefore, such calculations are performed by the Monte Carlo N-Particle Transport (MCNP) code in association with the weight window (WW) variance reduction technique, which increases the particle statistics in the desired tally region. However, for large problems, MCNP’s built-in weight window generator (WWG) produces zero WW parameters for tally regions located far from the source. To address this issue, the recursive Monte Carlo (RMC) method was proposed. This paper focuses on the RMC methodology and its implementation in the Helmholtz-Zentrum Dresden-Rossendorf’s (HZDR’s) in-house code TRAWEI, which is responsible for producing optimal zone weight parameters used for optimizing deep penetration MC calculations. In addition, this paper discusses the verification of the TRAWEI weight generator program to that of an existing MCNP WWG. The performance of TRAWEI-generated weight values is assessed using a handful of test cases involving two shield materials. Globally, the TRAWEI-generated weight values improved not only the statistical variance and computational efficiency of the MC run compared to the analog MCNP simulation but also those of the simulation with WW values generated by the standard MCNP WWG.