ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Odile Petit, Yannick Pénéliau, Yi-Kang Lee
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 476-485
Research Article | doi.org/10.1080/00295639.2023.2194209
Articles are hosted by Taylor and Francis Online.
A specific simulation mode has been implemented in the TRIPOLI-4® Monte Carlo code to deal with subcritical or critical configurations together with the use of variance reduction techniques usually dedicated to shielding studies. This multiple mode enables a coupling between the fixed-source criticality (or the criticality) mode with the shielding mode, within the Monte Carlo code, with the aims to simplify the calculation and help users run the code. Test cases with a fuel assembly in borated water are presented to illustrate the use of this feature in a subcritical case. An experimental setup is then investigated in a critical case. It is based on the Criticality Accident Alarm System benchmark experiment conducted in the SILENE critical assembly facility. Stability and efficiency issues are examined, and promising results are presented and discussed in both cases.