ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Ahmad M. Ibrahim, Tucker C. McClanahan, Igor Remec
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 451-460
Research Article | doi.org/10.1080/00295639.2023.2209681
Articles are hosted by Taylor and Francis Online.
The target segments of the Oak Ridge National Laboratory Second Target Station (STS) neutron production facility become highly activated due to spallation reactions or nuclei transmutation by primary protons and emitted neutrons. Once the target segments are removed from their location within the core vessel, decay dose rates must be accurately quantified to determine the shielding configurations of remote-handling tools and transport casks and to aid in planning maintenance activities. For this analysis, we utilized a hybrid unstructured mesh (UM)/constructive solid geometry approach for calculating spallation products and neutron fluxes, activation calculations using the AARE package that includes the CINDER2008 activation code to calculate the decay photon source at different cooling times, and the ADVANTG code to accelerate the final decay photon transport calculation. Both Type 316 stainless steel (SS-316) and lead were investigated as candidates for shielding materials. The decay photon transport calculation through the thick SS-316 or lead shields exhibited between 25 and 30 orders-of-magnitude attenuations in the radial direction, depending on the shield. Such a difficult shielding calculation required advanced variance reduction. ADVANTG has some missing features, which limits its usability in spallation neutron source applications. It does not support volumetric sources created for MCNP6.2 UM capability. An approximate source was created for this problem. Not only was this approximate source needed for running the ADVANTG calculation to generate the weight windows, but also it was essential to develop source biasing (SB) parameters that were crucial for dramatically accelerating the decay photon transport in this problem. With this approximate source, the analysis was completed in a very reasonable computational time, and the design of the STS remote-handling equipment was finalized. This paper compares the efficiency of Monte Carlo simulations with different weight window and SB parameters calculated using different approximate ADVANTG calculations.