ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Bipartisan bill aims to promote nuclear fusion development
Curtis
Cantwell
Sens. Maria Cantwell (D., Wash.) and John Curtis (R., Utah) have introduced a bill that would enable nuclear fusion energy technologies to have access to the federal advanced manufacturing production tax credit.
The companion version of the bill was introduced in the House by Reps. Carol Miller (R., W.Va.), Suzan DelBene (D., Wash.), Claudia Tenney (R., N.Y.), and Don Beyer (D., Va.)
The Fusion Advanced Manufacturing Parity Act extends the federal advanced manufacturing production credit (45X) by adding a 25 percent tax credit for companies that are domestically manufacturing fusion energy components.
Thomas M. Miller, Paul Mueller, Kumar Mohindroo, Igor Remec
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 435-450
Research Article | doi.org/10.1080/00295639.2023.2181027
Articles are hosted by Taylor and Francis Online.
At the U.S. Department of Energy’s Oak Ridge National Laboratory, the Second Target Station (STS) beamline sources for preliminary design have been used to perform a shielding analysis of the bunker. Prompt total effective dose rates (i.e., neutron plus photon effective dose rates when the proton beam is on) were calculated on top of the bunker roof and outside the bunker wall. These areas outside the bunker will be generally accessible, so the prompt total dose rate in these areas should not exceed 2.5 μSv‧h−1 (0.25 mrem‧h−1). This paper presents the required shielding thicknesses to meet this dose rate limit. In one instance, this dose rate limit is not met: For a combination of populated and unpopulated beamlines, the prompt total dose rate outside the bunker across from the unpopulated beamline, which has less shielding because of the lack of beamline shielding, slightly exceeds 2.5 μSv‧h−1. Once more details are known regarding the STS high-density concrete density and composition, a future analysis will investigate the shielding modifications required to reduce the calculated prompt total dose rates for this configuration to less than 2.5 μSv‧h−1.